
8
D E B U G G I N G

While the passive dynamic analysis tools
covered in the last chapter can often pro-

vide insight into a malicious sample, they
allow you to observe the sample’s actions only

indirectly and may not fully reveal its internal work-
ings. In certain cases, you’ll need something more
comprehensive.

The ultimate dynamic analysis tool is the debugger. A debugger is a pro-
gram that allows you to execute another program instruction by instruction.
At any time, you can examine or modify its registers and memory contents,
manipulate control !ow, and much more. In this chapter, I’ll introduce
various debugging concepts by means of the de facto debugger for macOS:
LLDB. Then we’ll walk through a case study, applying these concepts to
uncover surreptitious cryptocurrency mining logic in an application that
was found in Apple’s of"cial App Store.

166 Chapter 8

Why You Need a Debugger
The following example should clearly illustrate the power of the debugger.
Take a look at this snippet of disassembled code from malware known as Mami
(and named by yours truly). In this snippet, we "nd a large chunk of embed-
ded, encrypted data that is passed to a method named setDefaultConfiguration
(Listing 8-1):

[SBConfigManager setDefaultConfiguration:
@"uZmgulcipekSbayTO9ByamTUu_zVtsflazc2Nsuqgq0dXkoOzKMJMNTULoLpd-QV9qQy6VRluzRXqWOGscgheRvikLkPR
zs1pJbey2QdaUSXUZCX-UNERrosul22NsW2vYpS7HQO4VG5l8qic3rSH_fAhxsBXpEe557eHIr245LUYcEIpemnvSPTZ_lN
p2XwyOJjzcJWirKbKwtc3Q61pD..."];

Listing 8-1: Encrypted data (Mami)

If a malicious sample includes encrypted data, the malware author is
generally attempting to conceal something, either from detection tools or
a malware analyst. Therefore, when we encounter such data, we should be
motivated to decrypt it in order to uncover its secrets. Based on the Mami
method’s name, we can reasonably assume that this embedded data deter-
mines some initial con"guration. It may contain information valuable to
malware analysts, such as the addresses of command and control servers,
insights into the malware’s capabilities, and more.

So how do we decrypt it? Static analysis approaches are generally inef-
"cient, as they require us to both understand the cryptographic algorithm
used and recover the decryption key. File or process monitors are also of
little use in this case, because Mami’s encrypted con"guration information
is not written to disk, nor passed to any other processes. In other words, it
exists decrypted solely in the Mami process memory space.

Using a debugger, we can easily extract this information. First, we can
instruct the malware to execute until it reaches the setDefaultConfiguration:
method. Then, by stepping through, or executing each instruction one at a time,
we can allow the malware to continue execution in a controlled manner, paus-
ing when it has completed the decryption of its con"guration information.
As a debugger can directly inspect the memory of the process it is debugging,
we can then dump, or print, the now-decrypted con"guration information
(Listing 8-2):

{
 "dnsChanger" = {
 "affiliate" = "";
 "blacklist_dns" = ();
 "encrypt" = true;
 "external_id" = 0;
 "product_name" = dnsChanger;
 "publisher_id" = 0;
 ...
 "setup_dns" = (
 "82.163.143.135",

Debugging 167

 "82.163.142.137"
);
 "shared_storage" = "/Users/%USER_NAME%/Library/Application Support";
 "storage_timeout" = 120;
 };
 "installer_id" = 1359747970602718687;
 ...
}

Listing 8-2: Decrypted configuration data (Mami)

Various decrypted key/value pairs, such as "product_name" = dnsChanger
and the setup_dns array, provide insight into the malware’s goal: hijacking
infected systems’ DNS settings and then forcing domain name resolu-
tions to be routed through attacker-controlled servers. Incidentally, from
the decrypted con"guration we now know that these servers are found at
82.163.143.135 and 82.163.142.137. Perhaps the most noteworthy aspect of
this analysis is that we barely lifted a "nger. Nor did we have to spend any
time understanding how exactly this data was encrypted!

This is but one example of a debugger’s power. In general, you should
use a debugger to fully understand a code sample, as well as to dynami-
cally modify it on the !y, such as to bypass anti-analysis logic (discussed in
Chapter 9). Of course, some challenges temper these bene"ts. A debugger
is a complex tool requiring speci"c, low-level knowledge; thus, complet-
ing an analysis can require a signi"cant amount of time. However, once
you understand debugger concepts and the techniques for debugging ef"-
ciently, a debugger will become your best malware analysis friend. Often it
proves to be both the most ef"cient and comprehensive way to analyze any
sample.

However, one word of caution that is worth reiterating. Dynamic analy-
sis of a sample (which includes analysis within a debugger) involves execut-
ing the (potentially) malicious code, so it should always be performed on an
isolated analysis system or virtual machine. The latter affords the bene"t of
snapshots, which allow you to easily revert if a debugging session of a mali-
cious sample goes awry.

The LLDB Debugger
In this chapter we’ll focus on using LLDB, the de facto tool for debugging
programs, including malware, on macOS. Although other applications,
such as Hopper, have built user-friendly interfaces on top of it, you’ll prob-
ably discover that directly interacting with LLDB’s command line interface
is the most ef"cient approach. If you already have Apple’s Xcode installed,
you’ll "nd LLDB installed alongside at /usr/bin/lldb. If not, you can install
LLDB as a standalone program by entering lldb in the terminal and agree-
ing to the installation prompt.

168 Chapter 8

In this section we’ll look at various debugging concepts such as break-
points and manipulating control !ow, and I’ll illustrate how these can be
applied via LLDB to facilitate the analysis of malicious software. It should
be noted that the LLDB website provides a wealth of detailed knowl-
edge, such as an in-depth tutorial.1 Moreover, while debugging, you can
always consult the LLDB help command for inline information about any
command.

At a high level, a debugging session generally !ows in the following
manner:

1. You initialize a debugger session by loading an item, such as a malicious
sample, into the debugger.

2. You set breakpoints at various locations in the sample’s code, such as at
its main entry point or at method calls of interest. The sample is started
and runs uninhibited until a breakpoint is encountered, at which point
execution is halted.

3. Once the debugger has halted execution, you are free to poke around,
examining memory and register values, manipulating control !ow, set-
ting other breakpoints, and more.

4. You can either resume execution until another breakpoint is hit or
execute individual instructions one at a time.

Remember that when a malicious sample is debugged, it is being
allowed to execute. As such, always perform debugging in a virtual machine
or a standalone analysis system. This ensures that no persistent damage
occurs, and if you are debugging in a virtual machine, you can always revert it
to a previous state. This is often quite useful during debugging sessions. For
example, you might accidentally miss a breakpoint and run the malware in
its entirety.

Starting a Debugger Session
There are several ways to start a debugging session in LLDB. The simplest is
to execute LLDB from the terminal, passing it the path of a binary to ana-
lyze, followed by any additional arguments (Listing 8-3):

% lldb ~/Downloads/malware <arg0 arg1 arg2>

(lldb) target create "malware"
Current executable set to 'malware' (x86_64).

Listing 8-3: Starting a debugging session

As you can see, the debugger will display a target creation message,
make note of the executable set to be debugged, and identify its archi-
tecture. Although LLDB has created the debugging session, it has not yet
executed any of the program’s instructions.

Debugging 169

N O T E If you’re attempting to debug core operating system processes, you’ll likely fail due to
macOS’s System Integrity Protection (SIP). To debug such processes, turn off SIP by
executing csrutil disable from a terminal in macOS’s Recovery Mode.2

You can also attach LLDB to an instance of a running process as
follows:

% lldb -pid <target pid>

Once the debugger has attached to the process, a debugging session
can commence. However, we rarely use this approach to analyze malware,
because once the malware is already running, its core logic, which we are
generally seeking to understand, may have already executed. Moreover, this
logic could include anti-debugger code that prevents the debugger from
attaching.

A third way of starting a debugging session is to run the process attach
command with a process name and the --waitfor !ag from the LLDB shell,
as shown in Listing 8-4. This instructs the debugger to wait for a process
that matches this name and then attach as the process is starting.

% lldb
(lldb) process attach --name malware --waitfor

Listing 8-4: Waiting to attach to a process (named malware)

After attaching to the process, the debugger will pause execution. The
output will look similar to Listing 8-5:

Process 14980 stopped
* thread #1, queue = 'com.apple.main-thread', stop reason = signal SIGSTOP
...

Executable module set to "~/Downloads/malware".
Architecture set to: x86_64h-apple-macosx-.

Listing 8-5: Process attachment, triggered by the --waitfor flag

The --waitfor !ag is particularly useful when malware spawns other
malicious processes that you’d like to debug as well.

Controlling Execution
One of the most powerful aspects of a debugger is its ability to precisely
control the execution of the process it is debugging. For example,
you could instruct a process to execute a single instruction and then
halt. Table 8-1 describes several LLDB commands related to execution
control.

170 Chapter 8

Table 8-1: LLDB Commands for Controlling Execution

LLDB command Description

run (r) Run the debugged process. Starts the execution, which will continue
unabated until a breakpoint is hit, an exception is encountered, or
the process terminates.

continue (c) Continue execution of the debugged process. Similar to the run
command, it will continue execution until it reaches a breakpoint, an
exception, or process termination.

nexti (n) Execute the next instruction, as pointed to by the program counter
register, and then halt. This command will skip over function calls
and repeated instructions.

stepi (s) Execute the next instruction, as pointed to by the program counter
register, and halt. Unlike the nexti command, this command will step
into function calls, allowing analysis of the called function.

finish (f) Execute the rest of the instructions in the current function (called a
frame), return, and halt.

CTRL-C Pause execution. If the process has been run (r) or continued (c), this
will cause the process to halt wherever it is currently executing.

Notice that you can shorten the majority of LLDB commands to single
or double letters. For example, you can enter s for the stepi command.
Also note that LLDB includes several names for its commands in order to
maintain backward compatibility with the GNU Project Debugger (GDB),
a well-known predecessor to LLDB.3 For example, to perform a single step,
LLDB supports both thread step-inst and step, which matches GDB. For the
sake of simplicity, this chapter describes the LLDB command names that
are compatible with GDB.

While you could step through each of the binary’s executable instruc-
tions one at a time, doing so is tedious. On the other hand, instructing the
debugger to run the malware uninhibited defeats the purpose of debug-
ging in the "rst place. The solution is to use breakpoints.

Using Breakpoints
A breakpoint is a command that instructs the debugger to halt execution at
a speci"ed location. You’ll often set breakpoints at the entry point of the
binary, at method or function calls, or on the addresses of instructions of
interest. You may have to "rst triage a binary via static analysis tools such as a
disassembler in order to know exactly where to set such breakpoints. Once
a breakpoint has been hit and the debugger has halted execution, you’ll be
able to inspect the current state of the process, including its memory, the
CPU register contents, call stacks, and more.

You can use the breakpoint command (or b for short) to set a break-
point at a named location, such as a function or method name, or at an
address. Behind the scenes, the debugger will transparently modify the
process memory space to overwrite the byte at the speci"ed location with

Debugging 171

a breakpoint instruction. On Intel x86_64 systems, this is the interrupt 3
instruction, whose value is 0xCC. Once set, whenever the memory address
containing the breakpoint is executed, the interrupt 3 will cause the CPU
to return control to the debugger, which halts execution. Of course, if
execution is continued, the debugger will "rst execute the original instruc-
tion (which was transparently overridden to set the breakpoint), such that
normal program functionality is maintained.

Suppose we wanted to debug a malicious sample called malware and
halt execution at its main function (Listing 8-6). If the malware’s symbols
were not stripped (that is, compiled with debugging symbols), we could
start a debugging session and then enter the following to set a breakpoint
by name.

(lldb) b main
Breakpoint 1: where = malware`main,
 address = 0x100004bd9

Listing 8-6: Setting a breakpoint on a program’s main function

With this breakpoint set, we can use the run command to instruct the
debugger to run the debugged process. Execution will commence and
then halt when it reaches the instruction at the start of the main function
(Listing 8-7):

(lldb) run

(lldb) Process 1953 stopped
stop reason = breakpoint 1.1
-> 0x100004bd9 <+0>: pushq %rbp

Listing 8-7: Breakpoint hit; execution halted

Often, though, the names of functions are not available in a compiled
binary, so we must set breakpoints by specifying an address. You might also
want to set a breakpoint at some address, say, within a function of interest.
To set a breakpoint on an address, specify the hex address preceded by 0x.

In the previous example, if the main function (found at 0x100004bd9)
had not been named, we could still set a breakpoint at its start as follows
(Listing 8-8):

(lldb) b 0x100004bd9
Breakpoint 1: where = malware`__lldb_unnamed_symbol1$$malware,
 address = 0x100004bd9

Listing 8-8: Setting a breakpoint by address

Luckily, a large percentage of Mac malware is written in Objective-C,
meaning that, even in its compiled form, it will contain both class and
method names. As such, we can also set breakpoints on these method names,
or any Apple API it invokes, by passing the class and full method name to the
breakpoint (b) command.

172 Chapter 8

Setting Breakpoints on Method Names
Recall that in Chapter 5 we leveraged the class-dump tool to extract
Objective-C class and method names. If you spot methods of interest, you
can then set breakpoints upon them to take a closer look. For example,
by running class-dump on the installer for malware known as FinFisher,
we’ll "nd a method named installPayload in a class named appAppDelegate.
Specifying the class and method name will allow us to set a breakpoint so
that we can dynamically analyze how the malware persistently installs itself
(Listing 8-9):

Target 0: (installer) stopped.
(lldb) b -[appAppDelegate installPayload]

Breakpoint 1: where = installer`-[appAppDelegate installPayload],
address = 0x000000010000336c

Listing 8-9: Setting a breakpoint on an installPayload method (FinFisher)

Note that setting breakpoints on Apple Objective-C methods can be some-
what nuanced due to various opaque compiler optimizations and abstractions.
For example, imagine that, in a disassembler, you notice a malicious sample is
invoking the Apple class NSTask’s launch method. You’d like to set a debugger
breakpoint on this method so that the malware is halted when it attempts to
launch an external command or program. However, at runtime, the launch
method call will actually be handled not by the NSTask class but rather its
subclass, NSConcreteTask. Thus, you actually have to set the breakpoint in the
following manner:

b -[NSConcreteTask launch]

This might raise the following valid question: How do you know what
class or subclass will actually handle a method? One approach is to track
invocations of the objc_msgSend function (and its variants). As Objective-C
calls are routed through this function at runtime, it is possible to uncover
all classes and the methods they invoke. Shortly I’ll illustrate exactly
how to do this via an LLDB debugger script. For an in-depth discus-
sion of debugging Objective-C code, including more information on
setting breakpoints, see Ari Grant’s excellent write-up “Dancing in the
Debugger—A Waltz with LLDB.”4

Conditionally Triggering a Breakpoint
Often you’ll want a breakpoint to always trigger. Other times, it may be
more ef"cient for them to trigger and halt the process only under certain
conditions. Luckily, LLDB supports the notion of applying conditions to
breakpoints. These conditions must evaluate to true for the breakpoint to
trigger and halt the process. To add a condition to a breakpoint, use the -c
!ag and then specify the condition. For example, imagine that a malicious
sample is sending encrypted data to a remote command and control server.

Debugging 173

In a debugger, we could set a breakpoint on the function responsible for
encrypting the data prior to transmission in order to view its plaintext con-
tents. Unfortunately, if the malware also sends small “heartbeat” messages
at regular intervals, this will continually trigger our breakpoint. We most
likely want to ignore such messages, as they contain no meaningful data
and will slow down our analysis.

The solution? Adding a condition to the breakpoint! Speci"cally, we’ll
instruct the breakpoint to only trigger if the size of the data being encrypted
and ex"ltrated is larger than the heartbeat message. For the sake of the
example, let’s assume the message-encryption function takes, as its second
argument, the size of the message (which can be found in the $rsi register)
and that heartbeat messages are at most 128 bytes. To add this condition to
breakpoint number 1, we would execute the commands in Listing 8-10:

(lldb) br modify -c '$rsi > 128' 1
(lldb) br list
Current breakpoints:
1: address = 0x100003d28, locations = 1, resolved = 1, hit count = 0
Condition: $rsi > 128

Listing 8-10: Setting a conditional breakpoint

With such a conditional added to the breakpoint, the debugger will
only halt when messages with data larger than 128 bytes are passed into the
encryption and ex"ltration function. Perfect!

Adding Commands to Breakpoints
Usually we set a breakpoint and perform a deterministic action once it is
hit. In the previous example, we’ll likely always want to print out unen-
crypted data to see what the malware is about to ex"ltrate. While we could
perform this action manually each time the breakpoint is hit, it may be
more ef"cient to add what is known as a command to the breakpoint. This
command, which consists of one or more debugger commands, will be
automatically executed each time the breakpoint is hit. To add one to a
breakpoint, use breakpoint command add and specify the breakpoint by number.
Following this, specify the commands to be executed, and then enter DONE.
Keeping with the previous example, let’s assume the message-encryption
function takes as its "rst argument the plaintext contents of the message
(which can be found in the RDI register). To add a breakpoint action to print
this out, we’ll use the print object (po) command (discussed later in this
chapter). We’ll also tell the debugger to then simply continue (Listing 8-11):

(lldb) breakpoint command add 1
Enter your debugger command(s). Type 'DONE' to end.
> po $rdi
> continue
> DONE

Listing 8-11: Adding breakpoint commands

174 Chapter 8

Now, whenever this breakpoint is hit, the debugger will print out the
plaintext message passed to the function and then merrily continue on its
way. We can simply sit back and watch.

Managing Breakpoints
The LLDB debugger also supports various commands to manage break-
points. Breakpoints can be set, modi"ed, deleted, enabled, disabled, or
listed using the commands described in Table 8-2.

Table 8-2: LLDB Commands for Managing Breakpoints

LLDB command Description

breakpoint (b) <function/method name> Set a breakpoint on a specified function or
method name.

breakpoint (b) 0x<address> Set a breakpoint on an instruction at a
specified memory address.

breakpoint list (br l) Display all current breakpoints, including
their numbers.

breakpoint enable/disable <number>
(br e/dis)

Enable or disable a breakpoint (specified
by number).

breakpoint modify <modifications>
<number> (br mod)

Modify the options on a breakpoint (speci-
fied by number).

breakpoint delete <number> (br del) Delete a breakpoint (specified by number).

Running the help command with the breakpoint parameter provides a
comprehensive list of breakpoint-related commands, including those men-
tioned in Table 8-2.

(lldb) help breakpoint
Syntax: breakpoint <subcommand> [<command-options>]

For more information on the breakpoint commands supported by
LLDB, see the tool’s documentation on the topic.5

Examining All the Things
Once you’ve halted execution, you can instruct the debugger to display
many things, including the values of CPU registers, the contents of the
process memory, or other process state information such as the current call
stack. This powerful capability allows you to examine runtime information
that often isn’t directly available during static analysis. For example, in the
case study at the beginning of this chapter, we were able to view the mal-
ware’s decrypted in-memory con"guration information.

To dump the contents of the CPU registers, use the register read com-
mand (or the shortened reg r). To view the value of a speci"c register, pass
in the register name as the "nal parameter:

(lldb) reg read rax
rax = 0x0000000000000000

Debugging 175

Often we’re also interested in what the registers point to. That is to say,
we’d like to examine the contents of actual memory addresses. The memory
read or GDB-compatible x command can be used to read the contents of
memory. Note that these instructions both require register names to be pre-
"xed with $; for example, $rax.

But unless we explicitly specify a format for the data, LLDB will print out
the raw hex bytes. Table 8-3 lists a variety of format speci"ers that instruct
LLDB to treat the memory address as a string, instructions, or byte.

Table 8-3: LLDB Commands for Displaying Memory Contents

LLDB command Description

x/s <register or memory address> Display the memory as a null-terminated string.

x/i <register or memory address> Display the memory as an assembly instruction.

x/b <register or memory address> Display the memory as a byte.

You can also specify the number of items to display by adding a numeri-
cal value after the /. For example, to disassemble 10 instructions, starting
at the current location of the instruction pointer (RIP), enter x/10i $rip.

The LLDB debugger also supports the print command. When executed
with a register or memory address, it will display the contents at the speci"ed
location. You can also specify a typecast to instruct the print command to
format the data. For example, if the RSI register points to a null-terminated
string, you can display this by typing print (char*)$rsi.

The print command can also be executed with the object speci"er.
This can be used to print out the contents (or description, in Objective-C
parlance) of any Objective-C object. For instance, consider the example
presented at the start of the chapter. Within the setDefaultConfiguration
method, the Mami malware decrypts its con"guration information into
an Objective-C object referenced by the RAX register. Thus, using the print
object command, we can print the verbose description of the object, includ-
ing all of its key/value pairs (Listing 8-12):

(lldb) print object $rax
{
 "dnsChanger" = {
 "affiliate" = "";
 "blacklist_dns" = ();
 "encrypt" = true;
 "external_id" = 0;
 "product_name" = dnsChanger;
 "publisher_id" = 0;

 ...
 "setup_dns" = (
 "82.163.143.135",
 "82.163.142.137"
);
 "shared_storage" = "/Users/%USER_NAME%/Library/Application Support";
 "storage_timeout" = 120;

176 Chapter 8

 };
 "installer_id" = 1359747970602718687;
 ...
}

Listing 8-12: Printing a dictionary object (Mami)

You might be wondering how, given an arbitrary value or address, you
can decide which display command to use. That is to say, how do you know
if the address is a pointer to an Objective-C object, a string, or a sequence
of instructions? If the value to display is a parameter or return value from a
documented API, its type will be noted in its documentation. For example,
most of Apple’s Objective-C APIs or methods return objects, which should
be displayed using the print object command. However, if no context is
available, the disassembly of the binary may provide some insight, or trial
and error could suf"ce. For example, if the print object command doesn’t
produce meaningful output, perhaps try x/b to dump the contents of the
speci"ed data as raw hex bytes.

The backtrace (or bt) debugger command, which prints a sequence of
stack frames, is another useful debugging command for examining the
process. When a breakpoint is hit, we’re often interested in determining the
program !ow up to that point. For example, imagine we’ve set a breakpoint
on a malware’s string-decryption function, which may have been invoked in
multiple places in the malicious code to decrypt embedded strings. When
the breakpoint triggers, we’d like to know the location of the caller, that is, the
address of the code responsible for invoking the function. This can be
accomplished via backtrace. Whenever a function is called, a stack frame will
be created on the call stack—this contains the address that the process
will return to once the function is done, among other things. As the return
address is the address of the instruction immediately following the call, we
can check it to accurately determine the address of the caller. Moreover, as
the backtrace contains previous stack frames as well, the entire function call
hierarchy can be reconstructed. If you’re interested in learning more about
backtraces and call stacks, see Apple’s write-up “Examining the Call Stack.”6

Modifying Process State
Normally, a debugging session is rather passive once you’ve set your break-
points to halt execution. However, you can interact with a process by
directly modifying its state or even its control !ow. This is especially use-
ful when analyzing a malicious specimen that implements anti-debugging
logic, a topic discussed in the next chapter.

Once you’ve located anti-analysis logic, one option is to instruct the
debugger to simply skip over the code by modifying the instruction pointer.
In some cases, you can also overcome such anti-analysis code by simply
changing the value of a register. For example, modifying the RAX register
can subvert the value returned by a function.

The most common way to modify the state of the binary is to change
either CPU register values or the contents of memory. The register write

Debugging 177

command can be used to change values of the former, while the memory
write command modi"es the latter.

The register write (or reg write) command takes two parameters: the
target register and its new value. Let’s see exactly how we can leverage
this to wholly bypass the anti-analysis logic found in a widespread adware
installer. In Listing 8-13, we "rst use the x command with the 2i and the
program counter register (RIP) to display the next two instructions to be
executed. The call instruction at 0x100035cbe will trigger anti-debugging
logic. (The details of this logic are not pertinent for this example.)

(lldb) x/2i $rip
0x100035cbe: ff d0 callq *%rax
0x100035cc0: 48 83 c4 10 addq $0x10, %rsp

(lldb) register write $rip 0x100035CC0

(lldb) x/i $rip
0x100035cc0: 48 83 c4 10 addq $0x10, %rsp

Listing 8-13: Modifying the instruction pointer

In order to bypass the call to the anti-debugging logic, we use LLDB’s
register write command to modify the instruction pointer (RIP) to point to
the next instruction (at 0x100035cc0). Redisplaying the value of the instruction
pointer con"rms it has been successfully updated. After this modi"cation,
the problematic call at address 0x100035cbe is never invoked; thus, the mal-
ware’s anti-debugger logic is never executed, and our debugging session can
continue unimpeded. Moreover, the malware is generally none the wiser.

There are other reasons to modify CPU register values to in!uence the
debugged process. For example, imagine a piece of malware that attempts
to connect to a remote command and control server before persistently
installing itself. If the server is of!ine but we want the malware to continue
to execute so we can observe how it installs itself, we may have to modify a
register that contains the result of this connection check. As the return value
from a function call is stored in the RAX register, this may involve setting the
value of RAX to 1 (true), causing the malware to believe the connection check
succeeded (Listing 8-14):

(lldb) reg write $rax 1

Listing 8-14: Modifying a register

Easy peasy!
We can change the contents of any writable memory with the memory

write command. During malware analysis, this command could be useful to
change the default values of an encrypted con"guration "le that are only
decrypted in memory. Such a con"guration may include a trigger date, which
instructs the malware to remain dormant until the date is encountered. To
coerce immediate activity so you can observe the malware’s full behavior, you
could directly modify the trigger date in memory to the current time.

178 Chapter 8

As another example, the memory write command could be used to modify
the memory that holds the address of a malicious sample’s remote command
and control server. This provides a simple and non-destructive way for an
analyst to specify an alternate server, such as one under their control. Being
able to modify the address of a malware’s command and control server or
specify an alternate server has its perks. In a research paper titled “Offensive
Malware Analysis: Dissecting OSX/FruitFly.b Via a Custom C&C Server,” I
illustrated how malware connecting to an alternate server under an analyst’s
control could be tasked to reveal its capabilities.7

The format of the memory write command is described by LLDB’s help
command. The simplest way to leverage memory write is with:

• The memory address to modify
• The -s !ag and optionally a number (to specify the number of bytes to

modify if the default of 1 byte does not suf"ce)
• The value of the bytes to write to memory

For example, to change the memory at address 0x100100000 to 0x41414141,
you would run the following:

(lldb) memory write 0x100100000 -s 4 0x41414141

The modi"cation can then be con"rmed with the memory read
command:

(lldb) memory read 0x100100000
0x100100000: 41 41 41 41 00 00 00 00 00 00 00 00 00 00 00 00 AAAA...

LLDB Scripting
One of the more powerful features of LLDB is its support for debugging
scripts, which allow you to extend the capabilities of the debugger or sim-
ply automate repetitive tasks. Let’s walk through an example of building a
simple debugger script to illustrate important concepts and show how such a
script can improve your dynamic malware analysis.

Earlier in this chapter, I mentioned how tracking invocations of the
objc_msgSend function can reveal the majority of the Objective-C calls made
by the process. When analyzing malware, this can provide valuable insight
into the functionality of a specimen, as well as drive subsequent analysis.
One naive approach to monitoring calls to the objc_msgSend function is
simply setting a breakpoint on the function. Yes, this will halt the process
and allow you to examine the function’s arguments, which include both
class and method names. However, as you’ll quickly see, this approach is
very inef"cient, and the many, many calls to the objc_msgSend function will
become overwhelming.

A more ef"cient approach is to create a debugger script that will auto-
matically set a breakpoint, attach a command to print out the Objective-C

Debugging 179

class and method names, and then allow the process to continue. Debugger
scripts for LLDB are written in Python and loaded via the debugger com-
mand command script import <path to script>. These scripts should import
the LLDB module so that the LLDB API can be accessed by the rest of the
Python code. For more information on this API, see the of"cial LLDB doc-
umentation: “Python Reference.”8

More often than not, you’ll want your script to automatically perform
an action once it’s loaded (such as setting a breakpoint). To facilitate this,
LLDB provides the __lldb_init_module convenience function, which if it’s
implemented in your debugger script will be automatically invoked when-
ever the script is loaded. In our debugger script, we’ll use this function to
set a breakpoint and breakpoint callback (Listing 8-15):

import lldb

def __lldb_init_module(debugger, internal_dict):
 target = debugger.GetSelectedTarget()
 breakpoint = target.BreakpointCreateByName("objc_msgSend")
 breakpoint.SetScriptCallbackFunction('objc.msgSendCallback')

Listing 8-15: Setting a breakpoint via a debugger script

First, our code gets a reference to the process that is running within the
debugger. With this reference, we can then invoke the BreakpointCreateByName
function to set a breakpoint on the objc_msgSend function. Finally, we attach
our callback function with a call to the SetScriptCallbackFunction function.
Note that the parameter to this function is your module or script’s name,
followed by a period and the name of the callback (for example, objc
.msgSendCallback).

Now, whenever the objc_msgSend function is invoked, our callback,
msgSendCallback, will be invoked. In this callback, we simply want to print
out the Objective-C class and method name that is being invoked, before
allowing the debugged process to continue. Recall that, in previous dis-
cussions of the objc_msgSend function, we noted that its "rst parameter is
the Objective-C class name, while the second is the method name. We
also know that on Intel x86_64 platforms, the "rst two parameters will be
passed in the RDI and RSI registers, respectively. This means we can imple-
ment our callback in the following manner (Listing 8-16):

def msgSendCallback(frame, bp_loc, dict):
 lldb.debugger.HandleCommand('po [$rdi class]')
 lldb.debugger.HandleCommand('x/s $rsi')

 frame.thread.process.Continue()

Listing 8-16: Implementing a breakpoint action via a debugger script

In order to execute built-in debugger commands, we can use the
HandleCommand API. First, we print out the name of the Objective-C class that

180 Chapter 8

can be found within the RDI register. We make use of the po (print object)
command, because the class name we want to display is an Objective-C
string object. Following this, we print out the method’s name stored in the
RSI register. As it is a null-terminated C string, the x/s command suf"ces for
this purpose. Then we instruct the debugger to continue, so the debugged
process can resume.

We can save the code in Listings 8-15 and 8-16 (for example, to ~/objc.py),
load it into a debugger, and then execute a malicious sample we’re interested
in further analyzing (Listing 8-17):

(lldb) command script import ~/objc.py

(lldb) NSTask
0x1d8dcd07c: "alloc"

(lldb) NSConcreteTask
0x1d8dccbdd: "init"

(lldb) NSConcreteTask
0x1d8e1b67a: "setLaunchPath:"

(lldb) NSConcreteTask
0x1d8e1b771: "launch"

Listing 8-17: Our debugger script in action

From the output of our script, we see that the malware is leveraging the
NSTask class. Behind the scenes, we see that a NSConcreteTask is initialized, a
launch path is set, and then the task is launched. To investigate further, we
can now manually set a breakpoint on the NSConcreteTask’s launch method to
see exactly what the malware is executing.

LLDB debugger scripts are a powerful way to extend the debugger and
provide an invaluable capability, especially when analyzing more sophisti-
cated malware samples. Here we’ve only scratched the surface of what they
can do through a trivial, albeit useful, example. To learn more, consult
online examples, such as Taha Karim’s script to automatically dump the
Bundlore malware’s payload.9 These examples highlight more advanced use
cases while also providing valuable insight into LLDB’s scripting API.

A Sample Debugging Session: Uncovering Hidden
Cryptocurrency Mining Logic in an App Store Application

In early 2018, a popular application called Calendar 2, found in Apple’s
of"cial Mac App Store, was discovered to contain logic that surreptitiously
mined cryptocurrency on users’ computers (Figure 8-1). Though it isn’t
exactly malware per se, this application provides an illustrative case study
of how a debugger can help us understand a binary’s hidden or subversive
capabilities. Moreover, due to the rise of malicious crytocurrency miners tar-
geting macOS, this example is particularly relevant.

Debugging 181

Figure 8-1: A surreptitious cryptocurrency miner in Apple’s official Mac App Store

During my initial static analysis triage, I uncovered various methods
whose names referenced cryptocurrency mining (Listing 8-18). This was
odd, as the application claimed to simply be a calendar application.

/* @class MinerManager */
-(void)runMining {
 rdx = self->_coreLimit;
 r14 = [self calculateWorkingCores:rdx];
 [Coinstash_XMRSTAK9Coinstash setCPULimit:self->_cpuLimit];
 r15 = [self getPort];
 r12 = [self algorythm];
 [self getSlotMemoryMode];

 [Coinstash_XMRSTAK9Coinstash startMiningWithPort:r15
 password:self->_token
 coreCount:r14
 slowMemory:self->_slowMemoryMode
 currency:r12];
 ...

 return;
}

Listing 8-18: Cryptocurrency mining logic within an App Store application?

In this listing, we can see a method named runMining that contains
code that invokes methods in a framework named Coinstash_XMRSTAK. As
the framework is written in Swift, the method names are slightly mangled,
though still mostly readable.

One of the goals of the subsequent dynamic analysis was to uncover
information about the cryptocurrency account, where any mined coins were
to be sent. Based on the method names (such as startMiningWithPort, :password:
and so on), I reasoned that, in a debugging session, setting a breakpoint on
either of the methods would reveal this information.

182 Chapter 8

After "ring up LLDB and loading the application, we can set a break-
point on the runMining method by name, as shown in Listing 8-19:

% lldb CalendarFree.app
(lldb) target create "CalendarFree.app"
Current executable set to 'CalendarFree.app' (x86_64).

(lldb) b -[MinerManager runMining]
Breakpoint 1: where = CalendarFree`-[MinerManager runMining],
 address = 0x0000000100077fc0

Listing 8-19: Initializing a debugging session and setting an initial breakpoint

Once the breakpoint is set, we instruct the debugger to run the applica-
tion. As expected, it halts at the breakpoint we set (Listing 8-20):

(lldb) r
Process 782 launched: 'CalendarFree.app/Contents/MacOS/CalendarFree' (x86_64)

CalendarFree[782:7349] Miner: Stopped
Process 782 stopped
 stop reason = breakpoint 1.1

CalendarFree`-[MinerManager runMining]:
-> 0x100077fc0 <+0>: pushq %rbp
 0x100077fc1 <+1>: movq %rsp, %rbp
 0x100077fc4 <+4>: pushq %r15
 0x100077fc6 <+6>: pushq %r14

Listing 8-20: Breakpoint hit; execution halted

Let’s step through the instructions until we reach the call to the
Coinstash startMiningWithPort:... method. As its name suggests, it begins
the actual mining. Because we want to step over the other method calls
prior to reaching it, we use the nexti (or n) command (Listing 8-21). This
allows the calls to execute but avoids us having to step through them,
instruction by instruction.

(lldb) n

Process 782 stopped
 stop reason = instruction step over

CalendarFree`-[MinerManager runMining] + 35:
-> 0x100077fe3 <+35>: movq 0xaa3d6(%rip), %r13 ;0x00007fff58acba00: objc_msgSend

Listing 8-21: Stepping through instructions and over method calls

Eventually we approach the invocation of the method of interest. Recall
that, in assembly, Objective-C calls are routed through the objc_msgSend func-
tion. In the debugger, we "rst see this function’s address being moved into
the R13 register. Though we could just set a breakpoint on the call to the objc_
msgSend function (at address 0x100078067) that invokes the startMiningWithPort:...

Debugging 183

method, we’ll take a more exhaustive approach and continue stepping,
instruction by instruction, until the call has been reached (Listing 8-22):

(lldb) n

Process 782 stopped
 stop reason = instruction step over

CalendarFree`-[MinerManager runMining] + 167:
-> 0x100078067 <+167>: callq *%r13

(lldb) reg read $r13
r13 = 0x00007fff58acba00 libobjc.A.dylib`objc_msgSend

Listing 8-22: Stepping through instructions until the call of interest is reached

Note that, via the reg read command, we con"rmed that the R13 register
indeed contains the objc_msgSend function.

Recall from Chapter 6 that, at the time of a call to the objc_msgSend
function, certain registers hold speci"c argument values by convention. For
example, the function’s "rst argument (held in the RDI register) is the class
or object upon which the method is being invoked. During the static analy-
sis triage, this was identi"ed as a class named Coinstash_XMRSTAK.Coinstash.
Using the print object (po) command, we can dynamically see that this is
indeed correct:

(lldb) po $rdi
Coinstash_XMRSTAK.Coinstash

The second argument (held in the RSI register) will be a null-terminated
string that names the method to be invoked. Let’s con"rm this is the case,
and that its value is the startMiningWithPort:... method. To print out a null-
terminated string, we use the x command with the s format speci"er:

(lldb) x/s $rsi
0x1000f1576: "startMiningWithPort:password:coreCount:slowMemory:currency:"

Following the class and method name are the method’s arguments.
From the method’s name, we can gather it takes "ve arguments that include
a port, password, and currency. We couldn’t easily "gure out the values
of these arguments using static analysis methods, such as a disassembler,
because they didn’t readily appear. With the debugger, it’s a breeze.

We know that the next arguments are stored in the RDX, RCX, R8, and R9
registers, as speci"ed in the application binary interface. As this method
takes more than four arguments, the last argument will be found on the
stack (RSP). Let’s have a peek (Listing 8-23):

(lldb) po $rdx
7777

(lldb) po $rcx
qbix:greg@qbix.com

184 Chapter 8

(lldb) reg read $r8
r8 = 0x0000000000000001

(lldb) po $r9
always

(lldb) x/s $rsp
0x7ffeefbfe0d0: "graft"

Listing 8-23: Displaying the startMiningWithPort:... method’s parameters

Note that for the arguments that are objects, we use the po command to
display their contents. For those that aren’t, we use the other appropriate
display commands, such as reg read $r8 to view the contents of a register and
x/s to display a NULL-terminated string.

By examining the arguments, we’ve uncovered the port (7777), the
account password (qbix:greg@qbix.com), cryptocurrency (graft), and more!
Moreover, if we continue our debugging session, we’ll encounter additional
data, for example, within a NSURLRequest object (which in this debugging ses-
sion is found in memory at 0x1018f04e0). In the debugger, in conjunction
with the po command, we can invoke the NSURLRequest’s HTTPBody method on
the object 1 to display the contents (speci"cally the body), of this network
request. This reveals detailed account information and cryptomining statis-
tics (Listing 8-24):

1 (lldb) po [0x1018f04e0 HTTPBody]
{
 "mining": {
 "statistic": {
 "ZeroCounter": 0,
 "AverageHashRate": 0.92911845445632935,
 "CounterTime": 30,
 },
 "params": {
 "Token": "qbix:greg@qbix.com",
 "Algorithm": "graft",
 "CPULimit": 25,
 "EnableMiningMode": true,
 "CPUBatteryLimit": 10,
 "CoreLimit": 25,
 "Ports": {
 "7777": 1000000,
 "5555": 160,
 "3333": 40
 }
 }
 },
 ...
}

Listing 8-24: Displaying a network object containing cryptocurrency miner account infor-
mation and statistics

It is also worth noting that, as this information is securely transmitted
over the network (encrypted), it would have been rather involved to recover

Debugging 185

it via a simple network monitor. Via the debugger, it was relatively straight-
forward. If you’re interested in the full analysis of this application, including
more details on the use of a debugger to uncover and understand its
cryptomining logic, see my write-up “A Surreptitious Cryptocurrency
Miner in the Mac App Store?”10

Up Next
In this chapter I introduced the debugger, the most thorough tool for ana-
lyzing even complex malware threats. Speci"cally, I showed how to debug
a binary via breakpoints, instruction by instruction, while examining or
modifying registers and memory contents, skipping functions you don’t
want to execute, and much more. Now that you’re armed with this analysis
capability, malware doesn’t stand a chance.

Of course, malware authors are less than stoked that their malicious
creations can be deconstructed so easily. In the next chapter, we’ll dive into
the kinds of anti-analysis logic employed by malware authors to thwart (or
at least complicate) both static and dynamic analysis efforts.

Endnotes
 1 “LLDB Tutorial,” LLDB Debugger, https://lldb.llvm.org/use/tutorial.html.

 2 “Disabling and Enabling System Integrity Protection,” Apple Developer
Documentation, https://developer.apple.com/documentation/security/disabling
_and_enabling_system_integrity_protection/.

 3 “GDB to LLDB command map,” LLDB Debugger, https://lldb.llvm.org/use/
map.html.

 4 Ari Grant, “Dancing in the Debugger—A Waltz with LLDB,” Objc,
https://www.objc.io/issues/19-debugging/lldb-debugging/.

 5 “LLDB Tutorial: Setting Breakpoints,” LLDB Debugger, https://lldb.llvm.org/
use/tutorial.html#setting-breakpoints/.

 6 “Examining the Call Stack,” Apple Developer Documentation Archive, https://
developer.apple.com/library/archive/documentation/General/Conceptual/lldb
-guide/chapters/C5-Examining-The-Call-Stack.html.

 7 Patrick Wardle, “Offensive Malware Analysis: Dissecting OSX/FruitFly.b
Via A Custom C&C Server,” Virus Bulletin Conference, October 2017, https://
www.virusbulletin.com/uploads/pdf/magazine/2017/VB2017-Wardle.pdf.

 8 “Python Reference,” LLDB Debugger, December 2014, https://lldb.llvm.org/
use/python-reference.html.

 9 OSX/Bundlore Payload Dumper (bundlore_python_dump2.py), https://
gist.github.com/tahacon!ant/36bd7594f094e4d1b2afc14264f923dc/.

 10 Patrick Wardle, “A Surreptitious Cryptocurrency Miner in the Mac
App Store?” Objective-See, March 11, 2018, https://objective-see.com/blog/
blog_0x2B.html.

https://lldb.llvm.org/use/tutorial.html
https://developer.apple.com/documentation/security/disabling_and_enabling_system_integrity_protection/
https://developer.apple.com/documentation/security/disabling_and_enabling_system_integrity_protection/
https://lldb.llvm.org/use/map.html
https://lldb.llvm.org/use/map.html
https://www.objc.io/issues/19-debugging/lldb-debugging/
https://lldb.llvm.org/use/tutorial.html#setting-breakpoints/
https://lldb.llvm.org/use/tutorial.html#setting-breakpoints/
https://developer.apple.com/library/archive/documentation/General/Conceptual/lldb-guide/chapters/C5-Examining-The-Call-Stack.html
https://developer.apple.com/library/archive/documentation/General/Conceptual/lldb-guide/chapters/C5-Examining-The-Call-Stack.html
https://developer.apple.com/library/archive/documentation/General/Conceptual/lldb-guide/chapters/C5-Examining-The-Call-Stack.html
https://www.virusbulletin.com/uploads/pdf/magazine/2017/VB2017-Wardle.pdf
https://www.virusbulletin.com/uploads/pdf/magazine/2017/VB2017-Wardle.pdf
https://lldb.llvm.org/use/python-reference.html
https://lldb.llvm.org/use/python-reference.html
https://gist.github.com/tahaconfiant/36bd7594f094e4d1b2afc14264f923dc/
https://gist.github.com/tahaconfiant/36bd7594f094e4d1b2afc14264f923dc/
https://objective-see.com/blog/blog_0x2B.html
https://objective-see.com/blog/blog_0x2B.html

