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D E B U G G I N G

While the passive dynamic analysis tools 
covered in the last chapter can often pro-

vide insight into a malicious sample, they 
allow you to observe the sample’s actions only 

indirectly and may not fully reveal its internal work-
ings. In certain cases, you’ll need something more 
comprehensive. 

The ultimate dynamic analysis tool is the debugger. A debugger is a pro-
gram that allows you to execute another program instruction by instruction. 
At any time, you can examine or modify its registers and memory contents, 
manipulate control !ow, and much more. In this chapter, I’ll introduce 
various debugging concepts by means of the de facto debugger for macOS: 
LLDB. Then we’ll walk through a case study, applying these concepts to 
uncover surreptitious cryptocurrency mining logic in an application that 
was found in Apple’s of"cial App Store. 
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Why You Need a Debugger
The following example should clearly illustrate the power of the debugger. 
Take a look at this snippet of disassembled code from malware known as Mami 
(and named by yours truly). In this snippet, we "nd a large chunk of embed-
ded, encrypted data that is passed to a method named setDefaultConfiguration 
(Listing 8-1):

[SBConfigManager setDefaultConfiguration:
@"uZmgulcipekSbayTO9ByamTUu_zVtsflazc2Nsuqgq0dXkoOzKMJMNTULoLpd-QV9qQy6VRluzRXqWOGscgheRvikLkPR
zs1pJbey2QdaUSXUZCX-UNERrosul22NsW2vYpS7HQO4VG5l8qic3rSH_fAhxsBXpEe557eHIr245LUYcEIpemnvSPTZ_lN
p2XwyOJjzcJWirKbKwtc3Q61pD..."];

Listing 8-1: Encrypted data (Mami)

If a malicious sample includes encrypted data, the malware author is 
generally attempting to conceal something, either from detection tools or 
a malware analyst. Therefore, when we encounter such data, we should be 
motivated to decrypt it in order to uncover its secrets. Based on the Mami 
method’s name, we can reasonably assume that this embedded data deter-
mines some initial con"guration. It may contain information valuable to 
malware analysts, such as the addresses of command and control servers, 
insights into the malware’s capabilities, and more. 

So how do we decrypt it? Static analysis approaches are generally inef-
"cient, as they require us to both understand the cryptographic algorithm 
used and recover the decryption key. File or process monitors are also of 
little use in this case, because Mami’s encrypted con"guration information 
is not written to disk, nor passed to any other processes. In other words, it 
exists decrypted solely in the Mami process memory space. 

Using a debugger, we can easily extract this information. First, we can 
instruct the malware to execute until it reaches the setDefaultConfiguration: 
method. Then, by stepping through, or executing each instruction one at a time, 
we can allow the malware to continue execution in a controlled manner, paus-
ing when it has completed the decryption of its con"guration information. 
As a debugger can directly inspect the memory of the process it is debugging, 
we can then dump, or print, the now-decrypted con"guration information 
(Listing 8-2):

{
 "dnsChanger" =  {
   "affiliate" = "";
   "blacklist_dns" = ();
   "encrypt" = true;
   "external_id" = 0;
   "product_name" = dnsChanger;
   "publisher_id" = 0;
    ...
   "setup_dns" =         (
      "82.163.143.135",
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      "82.163.142.137"
    );
    "shared_storage" = "/Users/%USER_NAME%/Library/Application Support";
    "storage_timeout" = 120;
   };
 "installer_id" = 1359747970602718687;
 ...
}

Listing 8-2: Decrypted configuration data (Mami)

Various decrypted key/value pairs, such as "product_name" = dnsChanger 
and the setup_dns array, provide insight into the malware’s goal: hijacking 
infected systems’ DNS settings and then forcing domain name resolu-
tions to be routed through attacker-controlled servers. Incidentally, from 
the decrypted con"guration we now know that these servers are found at 
82.163.143.135 and 82.163.142.137. Perhaps the most noteworthy aspect of 
this analysis is that we barely lifted a "nger. Nor did we have to spend any 
time understanding how exactly this data was encrypted! 

This is but one example of a debugger’s power. In general, you should 
use a debugger to fully understand a code sample, as well as to dynami-
cally modify it on the !y, such as to bypass anti-analysis logic (discussed in 
Chapter 9). Of course, some challenges temper these bene"ts. A debugger 
is a complex tool requiring speci"c, low-level knowledge; thus, complet-
ing an analysis can require a signi"cant amount of time. However, once 
you understand debugger concepts and the techniques for debugging ef"-
ciently, a debugger will become your best malware analysis friend. Often it 
proves to be both the most ef"cient and comprehensive way to analyze any 
sample. 

However, one word of caution that is worth reiterating. Dynamic analy-
sis of a sample (which includes analysis within a debugger) involves execut-
ing the (potentially) malicious code, so it should always be performed on an 
isolated analysis system or virtual machine. The latter affords the bene"t of 
snapshots, which allow you to easily revert if a debugging session of a mali-
cious sample goes awry.

The LLDB Debugger
In this chapter we’ll focus on using LLDB, the de facto tool for debugging 
programs, including malware, on macOS. Although other applications, 
such as Hopper, have built user-friendly interfaces on top of it, you’ll prob-
ably discover that directly interacting with LLDB’s command line interface 
is the most ef"cient approach. If you already have Apple’s Xcode installed, 
you’ll "nd LLDB installed alongside at /usr/bin/lldb. If not, you can install 
LLDB as a standalone program by entering lldb in the terminal and agree-
ing to the installation prompt. 
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In this section we’ll look at various debugging concepts such as break-
points and manipulating control !ow, and I’ll illustrate how these can be 
applied via LLDB to facilitate the analysis of malicious software. It should 
be noted that the LLDB website provides a wealth of detailed knowl-
edge, such as an in-depth tutorial.1 Moreover, while debugging, you can 
always consult the LLDB help command for inline information about any 
command.

At a high level, a debugging session generally !ows in the following 
manner: 

1. You initialize a debugger session by loading an item, such as a malicious 
sample, into the debugger. 

2. You set breakpoints at various locations in the sample’s code, such as at 
its main entry point or at method calls of interest. The sample is started 
and runs uninhibited until a breakpoint is encountered, at which point 
execution is halted.

3. Once the debugger has halted execution, you are free to poke around, 
examining memory and register values, manipulating control !ow, set-
ting other breakpoints, and more.

4. You can either resume execution until another breakpoint is hit or 
execute individual instructions one at a time. 

Remember that when a malicious sample is debugged, it is being 
allowed to execute. As such, always perform debugging in a virtual machine 
or a standalone analysis system. This ensures that no persistent damage 
occurs, and if you are debugging in a virtual machine, you can always revert it 
to a previous state. This is often quite useful during debugging sessions. For 
example, you might accidentally miss a breakpoint and run the malware in 
its entirety.

Starting a Debugger Session
There are several ways to start a debugging session in LLDB. The simplest is 
to execute LLDB from the terminal, passing it the path of a binary to ana-
lyze, followed by any additional arguments (Listing 8-3):

% lldb ~/Downloads/malware <arg0 arg1 arg2>

(lldb) target create "malware"
Current executable set to 'malware' (x86_64).

Listing 8-3: Starting a debugging session

As you can see, the debugger will display a target creation message, 
make note of the executable set to be debugged, and identify its archi-
tecture. Although LLDB has created the debugging session, it has not yet 
executed any of the program’s instructions. 
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N O T E  If you’re attempting to debug core operating system processes, you’ll likely fail due to 
macOS’s System Integrity Protection (SIP). To debug such processes, turn off SIP by 
executing csrutil disable from a terminal in macOS’s Recovery Mode.2

You can also attach LLDB to an instance of a running process as 
follows:

% lldb -pid <target pid>

Once the debugger has attached to the process, a debugging session 
can commence. However, we rarely use this approach to analyze malware, 
because once the malware is already running, its core logic, which we are 
generally seeking to understand, may have already executed. Moreover, this 
logic could include anti-debugger code that prevents the debugger from 
attaching. 

A third way of starting a debugging session is to run the process attach 
command with a process name and the --waitfor !ag from the LLDB shell, 
as shown in Listing 8-4. This instructs the debugger to wait for a process 
that matches this name and then attach as the process is starting. 

% lldb
(lldb) process attach --name malware --waitfor

Listing 8-4: Waiting to attach to a process (named malware)

After attaching to the process, the debugger will pause execution. The 
output will look similar to Listing 8-5:

Process 14980 stopped
* thread #1, queue = 'com.apple.main-thread', stop reason = signal SIGSTOP
...

Executable module set to "~/Downloads/malware".
Architecture set to: x86_64h-apple-macosx-.

Listing 8-5: Process attachment, triggered by the --waitfor flag

The --waitfor !ag is particularly useful when malware spawns other 
malicious processes that you’d like to debug as well. 

Controlling Execution
One of the most powerful aspects of a debugger is its ability to precisely  
control the execution of the process it is debugging. For example,  
you could instruct a process to execute a single instruction and then  
halt. Table 8-1 describes several LLDB commands related to execution  
control.
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Table 8-1: LLDB Commands for Controlling Execution

LLDB command Description

run (r) Run the debugged process. Starts the execution, which will continue 
unabated until a breakpoint is hit, an exception is encountered, or 
the process terminates.

continue (c) Continue execution of the debugged process. Similar to the run 
command, it will continue execution until it reaches a breakpoint, an 
exception, or process termination.

nexti (n) Execute the next instruction, as pointed to by the program counter 
register, and then halt. This command will skip over function calls 
and repeated instructions. 

stepi (s) Execute the next instruction, as pointed to by the program counter 
register, and halt. Unlike the nexti command, this command will step 
into function calls, allowing analysis of the called function.

finish (f) Execute the rest of the instructions in the current function (called a 
frame), return, and halt.

CTRL-C Pause execution. If the process has been run (r) or continued (c), this 
will cause the process to halt wherever it is currently executing.

Notice that you can shorten the majority of LLDB commands to single 
or double letters. For example, you can enter s for the stepi command. 
Also note that LLDB includes several names for its commands in order to 
maintain backward compatibility with the GNU Project Debugger (GDB), 
a well-known predecessor to LLDB.3 For example, to perform a single step, 
LLDB supports both thread step-inst and step, which matches GDB. For the 
sake of simplicity, this chapter describes the LLDB command names that 
are compatible with GDB.

While you could step through each of the binary’s executable instruc-
tions one at a time, doing so is tedious. On the other hand, instructing the 
debugger to run the malware uninhibited defeats the purpose of debug-
ging in the "rst place. The solution is to use breakpoints.

Using Breakpoints
A breakpoint is a command that instructs the debugger to halt execution at 
a speci"ed location. You’ll often set breakpoints at the entry point of the 
binary, at method or function calls, or on the addresses of instructions of 
interest. You may have to "rst triage a binary via static analysis tools such as a 
disassembler in order to know exactly where to set such breakpoints. Once 
a breakpoint has been hit and the debugger has halted execution, you’ll be 
able to inspect the current state of the process, including its memory, the 
CPU register contents, call stacks, and more.

You can use the breakpoint command (or b for short) to set a break-
point at a named location, such as a function or method name, or at an 
address. Behind the scenes, the debugger will transparently modify the 
process memory space to overwrite the byte at the speci"ed location with 
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a breakpoint instruction. On Intel x86_64 systems, this is the interrupt 3 
instruction, whose value is 0xCC. Once set, whenever the memory address 
containing the breakpoint is executed, the interrupt 3 will cause the CPU 
to return control to the debugger, which halts execution. Of course, if 
execution is continued, the debugger will "rst execute the original instruc-
tion (which was transparently overridden to set the breakpoint), such that 
normal program functionality is maintained. 

Suppose we wanted to debug a malicious sample called malware and 
halt execution at its main function (Listing 8-6). If the malware’s symbols 
were not stripped (that is, compiled with debugging symbols), we could 
start a debugging session and then enter the following to set a breakpoint 
by name.

(lldb) b main
Breakpoint 1: where = malware`main, 
              address = 0x100004bd9

Listing 8-6: Setting a breakpoint on a program’s main function

With this breakpoint set, we can use the run command to instruct the 
debugger to run the debugged process. Execution will commence and 
then halt when it reaches the instruction at the start of the main function 
(Listing 8-7):

(lldb) run

(lldb) Process 1953 stopped
stop reason = breakpoint 1.1
->  0x100004bd9 <+0>: pushq  %rbp

Listing 8-7: Breakpoint hit; execution halted

Often, though, the names of functions are not available in a compiled 
binary, so we must set breakpoints by specifying an address. You might also 
want to set a breakpoint at some address, say, within a function of interest. 
To set a breakpoint on an address, specify the hex address preceded by 0x.

In the previous example, if the main function (found at 0x100004bd9) 
had not been named, we could still set a breakpoint at its start as follows 
(Listing 8-8):

(lldb) b 0x100004bd9
Breakpoint 1: where = malware`__lldb_unnamed_symbol1$$malware, 
              address = 0x100004bd9

Listing 8-8: Setting a breakpoint by address

Luckily, a large percentage of Mac malware is written in Objective-C, 
meaning that, even in its compiled form, it will contain both class and 
method names. As such, we can also set breakpoints on these method names, 
or any Apple API it invokes, by passing the class and full method name to the 
breakpoint (b) command. 
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Setting Breakpoints on Method Names
Recall that in Chapter 5 we leveraged the class-dump tool to extract 
Objective-C class and method names. If you spot methods of interest, you  
can then set breakpoints upon them to take a closer look. For example, 
by running class-dump on the installer for malware known as FinFisher, 
we’ll "nd a method named installPayload in a class named appAppDelegate. 
Specifying the class and method name will allow us to set a breakpoint so 
that we can dynamically analyze how the malware persistently installs itself  
(Listing 8-9): 

Target 0: (installer) stopped.
(lldb) b -[appAppDelegate installPayload]

Breakpoint 1: where = installer`-[appAppDelegate installPayload], 
address = 0x000000010000336c

Listing 8-9: Setting a breakpoint on an installPayload method (FinFisher)

Note that setting breakpoints on Apple Objective-C methods can be some-
what nuanced due to various opaque compiler optimizations and abstractions. 
For example, imagine that, in a disassembler, you notice a malicious sample is 
invoking the Apple class NSTask’s launch method. You’d like to set a debugger 
breakpoint on this method so that the malware is halted when it attempts to 
launch an external command or program. However, at runtime, the launch 
method call will actually be handled not by the NSTask class but rather its 
subclass, NSConcreteTask. Thus, you actually have to set the breakpoint in the 
following manner: 

b -[NSConcreteTask launch]

This might raise the following valid question: How do you know what 
class or subclass will actually handle a method? One approach is to track 
invocations of the objc_msgSend function (and its variants). As Objective-C 
calls are routed through this function at runtime, it is possible to uncover 
all classes and the methods they invoke. Shortly I’ll illustrate exactly 
how to do this via an LLDB debugger script. For an in-depth discus-
sion of debugging Objective-C code, including more information on 
setting breakpoints, see Ari Grant’s excellent write-up “Dancing in the 
Debugger—A Waltz with LLDB.”4

Conditionally Triggering a Breakpoint
Often you’ll want a breakpoint to always trigger. Other times, it may be 
more ef"cient for them to trigger and halt the process only under certain 
conditions. Luckily, LLDB supports the notion of applying conditions to 
breakpoints. These conditions must evaluate to true for the breakpoint to 
trigger and halt the process. To add a condition to a breakpoint, use the -c 
!ag and then specify the condition. For example, imagine that a malicious 
sample is sending encrypted data to a remote command and control server. 



Debugging   173

In a debugger, we could set a breakpoint on the function responsible for 
encrypting the data prior to transmission in order to view its plaintext con-
tents. Unfortunately, if the malware also sends small “heartbeat” messages 
at regular intervals, this will continually trigger our breakpoint. We most 
likely want to ignore such messages, as they contain no meaningful data 
and will slow down our analysis. 

The solution? Adding a condition to the breakpoint! Speci"cally, we’ll 
instruct the breakpoint to only trigger if the size of the data being encrypted 
and ex"ltrated is larger than the heartbeat message. For the sake of the 
example, let’s assume the message-encryption function takes, as its second 
argument, the size of the message (which can be found in the $rsi register) 
and that heartbeat messages are at most 128 bytes. To add this condition to 
breakpoint number 1, we would execute the commands in Listing 8-10:

(lldb) br modify -c '$rsi > 128' 1
(lldb) br list
Current breakpoints:
1: address = 0x100003d28, locations = 1, resolved = 1, hit count = 0
Condition: $rsi  > 128

Listing 8-10: Setting a conditional breakpoint

With such a conditional added to the breakpoint, the debugger will 
only halt when messages with data larger than 128 bytes are passed into the 
encryption and ex"ltration function. Perfect! 

Adding Commands to Breakpoints
Usually we set a breakpoint and perform a deterministic action once it is 
hit. In the previous example, we’ll likely always want to print out unen-
crypted data to see what the malware is about to ex"ltrate. While we could 
perform this action manually each time the breakpoint is hit, it may be 
more ef"cient to add what is known as a command to the breakpoint. This 
command, which consists of one or more debugger commands, will be 
automatically executed each time the breakpoint is hit. To add one to a 
breakpoint, use breakpoint command add and specify the breakpoint by number. 
Following this, specify the commands to be executed, and then enter DONE. 
Keeping with the previous example, let’s assume the message-encryption 
function takes as its "rst argument the plaintext contents of the message 
(which can be found in the RDI register). To add a breakpoint action to print 
this out, we’ll use the print object (po) command (discussed later in this 
chapter). We’ll also tell the debugger to then simply continue (Listing 8-11): 

(lldb) breakpoint command add 1
Enter your debugger command(s).  Type 'DONE' to end.
> po $rdi
> continue 
> DONE

Listing 8-11: Adding breakpoint commands
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Now, whenever this breakpoint is hit, the debugger will print out the 
plaintext message passed to the function and then merrily continue on its 
way. We can simply sit back and watch. 

Managing Breakpoints
The LLDB debugger also supports various commands to manage break-
points. Breakpoints can be set, modi"ed, deleted, enabled, disabled, or 
listed using the commands described in Table 8-2.

Table 8-2: LLDB Commands for Managing Breakpoints

LLDB command Description

breakpoint (b) <function/method name> Set a breakpoint on a specified function or 
method name.

breakpoint (b) 0x<address> Set a breakpoint on an instruction at a 
specified memory address.

breakpoint list (br l) Display all current breakpoints, including 
their numbers.

breakpoint enable/disable <number>  
(br e/dis)

Enable or disable a breakpoint (specified 
by number).

breakpoint modify <modifications> 
<number> (br mod)

Modify the options on a breakpoint (speci-
fied by number).

breakpoint delete <number> (br del) Delete a breakpoint (specified by number).

Running the help command with the breakpoint parameter provides a 
comprehensive list of breakpoint-related commands, including those men-
tioned in Table 8-2. 

(lldb) help breakpoint
Syntax: breakpoint <subcommand> [<command-options>]

For more information on the breakpoint commands supported by 
LLDB, see the tool’s documentation on the topic.5

Examining All the Things
Once you’ve halted execution, you can instruct the debugger to display 
many things, including the values of CPU registers, the contents of the 
process memory, or other process state information such as the current call 
stack. This powerful capability allows you to examine runtime information 
that often isn’t directly available during static analysis. For example, in the 
case study at the beginning of this chapter, we were able to view the mal-
ware’s decrypted in-memory con"guration information.

To dump the contents of the CPU registers, use the register read com-
mand (or the shortened reg r). To view the value of a speci"c register, pass 
in the register name as the "nal parameter: 

(lldb) reg read rax
rax = 0x0000000000000000
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Often we’re also interested in what the registers point to. That is to say, 
we’d like to examine the contents of actual memory addresses. The memory 
read or GDB-compatible x command can be used to read the contents of 
memory. Note that these instructions both require register names to be pre-
"xed with $; for example, $rax.

But unless we explicitly specify a format for the data, LLDB will print out 
the raw hex bytes. Table 8-3 lists a variety of format speci"ers that instruct 
LLDB to treat the memory address as a string, instructions, or byte.

Table 8-3: LLDB Commands for Displaying Memory Contents

LLDB command Description

x/s <register or memory address> Display the memory as a null-terminated string.

x/i <register or memory address> Display the memory as an assembly instruction.

x/b <register or memory address> Display the memory as a byte.

You can also specify the number of items to display by adding a numeri-
cal value after the /. For example, to disassemble 10 instructions, starting 
at the current location of the instruction pointer (RIP), enter x/10i $rip. 

The LLDB debugger also supports the print command. When executed 
with a register or memory address, it will display the contents at the speci"ed 
location. You can also specify a typecast to instruct the print command to 
format the data. For example, if the RSI register points to a null-terminated 
string, you can display this by typing print (char*)$rsi.

The print command can also be executed with the object speci"er. 
This can be used to print out the contents (or description, in Objective-C 
parlance) of any Objective-C object. For instance, consider the example 
presented at the start of the chapter. Within the setDefaultConfiguration 
method, the Mami malware decrypts its con"guration information into 
an Objective-C object referenced by the RAX register. Thus, using the print 
object command, we can print the verbose description of the object, includ-
ing all of its key/value pairs (Listing 8-12):

(lldb) print object $rax
{
 "dnsChanger" =  {
   "affiliate" = "";
   "blacklist_dns" = ();
   "encrypt" = true;
   "external_id" = 0;
   "product_name" = dnsChanger;
   "publisher_id" = 0;

    ...
   "setup_dns" =         (
      "82.163.143.135",
      "82.163.142.137"
    );
    "shared_storage" = "/Users/%USER_NAME%/Library/Application Support";
    "storage_timeout" = 120;
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   };
 "installer_id" = 1359747970602718687;
 ...
}

Listing 8-12: Printing a dictionary object (Mami)

You might be wondering how, given an arbitrary value or address, you 
can decide which display command to use. That is to say, how do you know 
if the address is a pointer to an Objective-C object, a string, or a sequence 
of instructions? If the value to display is a parameter or return value from a 
documented API, its type will be noted in its documentation. For example, 
most of Apple’s Objective-C APIs or methods return objects, which should 
be displayed using the print object command. However, if no context is 
available, the disassembly of the binary may provide some insight, or trial 
and error could suf"ce. For example, if the print object command doesn’t 
produce meaningful output, perhaps try x/b to dump the contents of the 
speci"ed data as raw hex bytes.

The backtrace (or bt) debugger command, which prints a sequence of 
stack frames, is another useful debugging command for examining the 
process. When a breakpoint is hit, we’re often interested in determining the 
program !ow up to that point. For example, imagine we’ve set a breakpoint 
on a malware’s string-decryption function, which may have been invoked in 
multiple places in the malicious code to decrypt embedded strings. When 
the breakpoint triggers, we’d like to know the location of the caller, that is, the  
address of the code responsible for invoking the function. This can be 
accomplished via backtrace. Whenever a function is called, a stack frame will 
be created on the call stack—this contains the address that the process 
will return to once the function is done, among other things. As the return 
address is the address of the instruction immediately following the call, we 
can check it to accurately determine the address of the caller. Moreover, as 
the backtrace contains previous stack frames as well, the entire function call 
hierarchy can be reconstructed. If you’re interested in learning more about 
backtraces and call stacks, see Apple’s write-up “Examining the Call Stack.”6

Modifying Process State
Normally, a debugging session is rather passive once you’ve set your break-
points to halt execution. However, you can interact with a process by 
directly modifying its state or even its control !ow. This is especially use-
ful when analyzing a malicious specimen that implements anti-debugging 
logic, a topic discussed in the next chapter. 

Once you’ve located anti-analysis logic, one option is to instruct the 
debugger to simply skip over the code by modifying the instruction pointer. 
In some cases, you can also overcome such anti-analysis code by simply 
changing the value of a register. For example, modifying the RAX register 
can subvert the value returned by a function.

The most common way to modify the state of the binary is to change 
either CPU register values or the contents of memory. The register write 
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command can be used to change values of the former, while the memory 
write command modi"es the latter. 

The register write (or reg write) command takes two parameters: the 
target register and its new value. Let’s see exactly how we can leverage 
this to wholly bypass the anti-analysis logic found in a widespread adware 
installer. In Listing 8-13, we "rst use the x command with the 2i and the 
program counter register (RIP) to display the next two instructions to be 
executed. The call instruction at 0x100035cbe will trigger anti-debugging 
logic. (The details of this logic are not pertinent for this example.) 

(lldb) x/2i $rip 
0x100035cbe: ff d0 callq *%rax
0x100035cc0: 48 83 c4 10 addq $0x10, %rsp

(lldb) register write $rip 0x100035CC0 

(lldb) x/i $rip 
0x100035cc0: 48 83 c4 10 addq $0x10, %rsp

Listing 8-13: Modifying the instruction pointer 

In order to bypass the call to the anti-debugging logic, we use LLDB’s 
register write command to modify the instruction pointer (RIP) to point to 
the next instruction (at 0x100035cc0). Redisplaying the value of the instruction 
pointer con"rms it has been successfully updated. After this modi"cation, 
the problematic call at address 0x100035cbe is never invoked; thus, the mal-
ware’s anti-debugger logic is never executed, and our debugging session can 
continue unimpeded. Moreover, the malware is generally none the wiser.

There are other reasons to modify CPU register values to in!uence the 
debugged process. For example, imagine a piece of malware that attempts 
to connect to a remote command and control server before persistently 
installing itself. If the server is of!ine but we want the malware to continue 
to execute so we can observe how it installs itself, we may have to modify a 
register that contains the result of this connection check. As the return value 
from a function call is stored in the RAX register, this may involve setting the 
value of RAX to 1 (true), causing the malware to believe the connection check 
succeeded (Listing 8-14):

(lldb) reg write $rax 1

Listing 8-14: Modifying a register

Easy peasy! 
We can change the contents of any writable memory with the memory 

write command. During malware analysis, this command could be useful to 
change the default values of an encrypted con"guration "le that are only 
decrypted in memory. Such a con"guration may include a trigger date, which 
instructs the malware to remain dormant until the date is encountered. To 
coerce immediate activity so you can observe the malware’s full behavior, you 
could directly modify the trigger date in memory to the current time. 
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As another example, the memory write command could be used to modify 
the memory that holds the address of a malicious sample’s remote command 
and control server. This provides a simple and non-destructive way for an 
analyst to specify an alternate server, such as one under their control. Being 
able to modify the address of a malware’s command and control server or 
specify an alternate server has its perks. In a research paper titled “Offensive 
Malware Analysis: Dissecting OSX/FruitFly.b Via a Custom C&C Server,” I 
illustrated how malware connecting to an alternate server under an analyst’s 
control could be tasked to reveal its capabilities.7

The format of the memory write command is described by LLDB’s help 
command. The simplest way to leverage memory write is with:

• The memory address to modify
• The -s !ag and optionally a number (to specify the number of bytes to 

modify if the default of 1 byte does not suf"ce) 
• The value of the bytes to write to memory

For example, to change the memory at address 0x100100000 to 0x41414141, 
you would run the following: 

(lldb) memory write 0x100100000 -s 4 0x41414141

The modi"cation can then be con"rmed with the memory read 
command:

(lldb) memory read 0x100100000
0x100100000: 41 41 41 41 00 00 00 00 00 00 00 00 00 00 00 00  AAAA...

LLDB Scripting
One of the more powerful features of LLDB is its support for debugging 
scripts, which allow you to extend the capabilities of the debugger or sim-
ply automate repetitive tasks. Let’s walk through an example of building a 
simple debugger script to illustrate important concepts and show how such a 
script can improve your dynamic malware analysis. 

Earlier in this chapter, I mentioned how tracking invocations of the 
objc_msgSend function can reveal the majority of the Objective-C calls made 
by the process. When analyzing malware, this can provide valuable insight 
into the functionality of a specimen, as well as drive subsequent analysis. 
One naive approach to monitoring calls to the objc_msgSend function is 
simply setting a breakpoint on the function. Yes, this will halt the process 
and allow you to examine the function’s arguments, which include both 
class and method names. However, as you’ll quickly see, this approach is 
very inef"cient, and the many, many calls to the objc_msgSend function will 
become overwhelming. 

A more ef"cient approach is to create a debugger script that will auto-
matically set a breakpoint, attach a command to print out the Objective-C 
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class and method names, and then allow the process to continue. Debugger 
scripts for LLDB are written in Python and loaded via the debugger com-
mand command script import <path to script>. These scripts should import 
the LLDB module so that the LLDB API can be accessed by the rest of the 
Python code. For more information on this API, see the of"cial LLDB doc-
umentation: “Python Reference.”8

More often than not, you’ll want your script to automatically perform 
an action once it’s loaded (such as setting a breakpoint). To facilitate this, 
LLDB provides the __lldb_init_module convenience function, which if it’s 
implemented in your debugger script will be automatically invoked when-
ever the script is loaded. In our debugger script, we’ll use this function to 
set a breakpoint and breakpoint callback (Listing 8-15):

import lldb

def __lldb_init_module(debugger, internal_dict):
    target = debugger.GetSelectedTarget()
    breakpoint = target.BreakpointCreateByName("objc_msgSend")
    breakpoint.SetScriptCallbackFunction('objc.msgSendCallback')

Listing 8-15: Setting a breakpoint via a debugger script

First, our code gets a reference to the process that is running within the 
debugger. With this reference, we can then invoke the BreakpointCreateByName 
function to set a breakpoint on the objc_msgSend function. Finally, we attach 
our callback function with a call to the SetScriptCallbackFunction function. 
Note that the parameter to this function is your module or script’s name, 
followed by a period and the name of the callback (for example, objc 
.msgSendCallback). 

Now, whenever the objc_msgSend function is invoked, our callback, 
msgSendCallback, will be invoked. In this callback, we simply want to print 
out the Objective-C class and method name that is being invoked, before 
allowing the debugged process to continue. Recall that, in previous dis-
cussions of the objc_msgSend function, we noted that its "rst parameter is 
the Objective-C class name, while the second is the method name. We 
also know that on Intel x86_64 platforms, the "rst two parameters will be 
passed in the RDI and RSI registers, respectively. This means we can imple-
ment our callback in the following manner (Listing 8-16): 

def msgSendCallback(frame, bp_loc, dict):
    lldb.debugger.HandleCommand('po [$rdi class]')
    lldb.debugger.HandleCommand('x/s $rsi')

    frame.thread.process.Continue()

Listing 8-16: Implementing a breakpoint action via a debugger script

In order to execute built-in debugger commands, we can use the 
HandleCommand API. First, we print out the name of the Objective-C class that 
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can be found within the RDI register. We make use of the po (print object) 
command, because the class name we want to display is an Objective-C 
string object. Following this, we print out the method’s name stored in the 
RSI register. As it is a null-terminated C string, the x/s command suf"ces for 
this purpose. Then we instruct the debugger to continue, so the debugged 
process can resume. 

We can save the code in Listings 8-15 and 8-16 (for example, to ~/objc.py), 
load it into a debugger, and then execute a malicious sample we’re interested 
in further analyzing (Listing 8-17): 

(lldb) command script import ~/objc.py

(lldb) NSTask
0x1d8dcd07c: "alloc"

(lldb) NSConcreteTask
0x1d8dccbdd: "init"

(lldb) NSConcreteTask
0x1d8e1b67a: "setLaunchPath:"

(lldb) NSConcreteTask
0x1d8e1b771: "launch"

Listing 8-17: Our debugger script in action

From the output of our script, we see that the malware is leveraging the 
NSTask class. Behind the scenes, we see that a NSConcreteTask is initialized, a 
launch path is set, and then the task is launched. To investigate further, we 
can now manually set a breakpoint on the NSConcreteTask’s launch method to 
see exactly what the malware is executing. 

LLDB debugger scripts are a powerful way to extend the debugger and 
provide an invaluable capability, especially when analyzing more sophisti-
cated malware samples. Here we’ve only scratched the surface of what they 
can do through a trivial, albeit useful, example. To learn more, consult 
online examples, such as Taha Karim’s script to automatically dump the 
Bundlore malware’s payload.9 These examples highlight more advanced use 
cases while also providing valuable insight into LLDB’s scripting API.

A Sample Debugging Session: Uncovering Hidden 
Cryptocurrency Mining Logic in an App Store Application

In early 2018, a popular application called Calendar 2, found in Apple’s 
of"cial Mac App Store, was discovered to contain logic that surreptitiously 
mined cryptocurrency on users’ computers (Figure 8-1). Though it isn’t 
exactly malware per se, this application provides an illustrative case study 
of how a debugger can help us understand a binary’s hidden or subversive 
capabilities. Moreover, due to the rise of malicious crytocurrency miners tar-
geting macOS, this example is particularly relevant.
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Figure 8-1: A surreptitious cryptocurrency miner in Apple’s official Mac App Store

During my initial static analysis triage, I uncovered various methods 
whose names referenced cryptocurrency mining (Listing 8-18). This was 
odd, as the application claimed to simply be a calendar application.

/* @class MinerManager */
-(void)runMining {
    rdx = self->_coreLimit;
    r14 = [self calculateWorkingCores:rdx];
    [Coinstash_XMRSTAK9Coinstash setCPULimit:self->_cpuLimit];
    r15 = [self getPort];
    r12 = [self algorythm];
    [self getSlotMemoryMode];

    [Coinstash_XMRSTAK9Coinstash startMiningWithPort:r15 
                                 password:self->_token 
                                 coreCount:r14
                                 slowMemory:self->_slowMemoryMode
                                 currency:r12];
    ...

    return;
}

Listing 8-18: Cryptocurrency mining logic within an App Store application?

In this listing, we can see a method named runMining that contains 
code that invokes methods in a framework named Coinstash_XMRSTAK. As 
the framework is written in Swift, the method names are slightly mangled, 
though still mostly readable. 

One of the goals of the subsequent dynamic analysis was to uncover 
information about the cryptocurrency account, where any mined coins were 
to be sent. Based on the method names (such as startMiningWithPort, :password: 
and so on), I reasoned that, in a debugging session, setting a breakpoint on 
either of the methods would reveal this information. 
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After "ring up LLDB and loading the application, we can set a break-
point on the runMining method by name, as shown in Listing 8-19:

% lldb CalendarFree.app
(lldb) target create "CalendarFree.app"
Current executable set to 'CalendarFree.app' (x86_64).

(lldb) b -[MinerManager runMining]
Breakpoint 1: where = CalendarFree`-[MinerManager runMining], 
              address = 0x0000000100077fc0

Listing 8-19: Initializing a debugging session and setting an initial breakpoint

Once the breakpoint is set, we instruct the debugger to run the applica-
tion. As expected, it halts at the breakpoint we set (Listing 8-20):

(lldb) r
Process 782 launched: 'CalendarFree.app/Contents/MacOS/CalendarFree' (x86_64)

CalendarFree[782:7349] Miner: Stopped
Process 782 stopped
 stop reason = breakpoint 1.1
 
CalendarFree`-[MinerManager runMining]:
->  0x100077fc0 <+0>: pushq  %rbp
    0x100077fc1 <+1>: movq   %rsp, %rbp
    0x100077fc4 <+4>: pushq  %r15
    0x100077fc6 <+6>: pushq  %r14

Listing 8-20: Breakpoint hit; execution halted

Let’s step through the instructions until we reach the call to the 
Coinstash startMiningWithPort:... method. As its name suggests, it begins 
the actual mining. Because we want to step over the other method calls 
prior to reaching it, we use the nexti (or n) command (Listing 8-21). This 
allows the calls to execute but avoids us having to step through them, 
instruction by instruction. 

(lldb) n

Process 782 stopped
 stop reason = instruction step over

CalendarFree`-[MinerManager runMining] + 35:
->  0x100077fe3 <+35>: movq 0xaa3d6(%rip), %r13   ;0x00007fff58acba00: objc_msgSend

Listing 8-21: Stepping through instructions and over method calls

Eventually we approach the invocation of the method of interest. Recall 
that, in assembly, Objective-C calls are routed through the objc_msgSend func-
tion. In the debugger, we "rst see this function’s address being moved into 
the R13 register. Though we could just set a breakpoint on the call to the objc_
msgSend function (at address 0x100078067) that invokes the startMiningWithPort:... 
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method, we’ll take a more exhaustive approach and continue stepping, 
instruction by instruction, until the call has been reached (Listing 8-22):

(lldb) n

Process 782 stopped
 stop reason = instruction step over

CalendarFree`-[MinerManager runMining] + 167:
->  0x100078067 <+167>: callq  *%r13

(lldb) reg read $r13
r13 = 0x00007fff58acba00  libobjc.A.dylib`objc_msgSend 

Listing 8-22: Stepping through instructions until the call of interest is reached

Note that, via the reg read command, we con"rmed that the R13 register 
indeed contains the objc_msgSend function.

Recall from Chapter 6 that, at the time of a call to the objc_msgSend 
function, certain registers hold speci"c argument values by convention. For 
example, the function’s "rst argument (held in the RDI register) is the class 
or object upon which the method is being invoked. During the static analy-
sis triage, this was identi"ed as a class named Coinstash_XMRSTAK.Coinstash. 
Using the print object (po) command, we can dynamically see that this is 
indeed correct:

(lldb) po $rdi
Coinstash_XMRSTAK.Coinstash

The second argument (held in the RSI register) will be a null-terminated 
string that names the method to be invoked. Let’s con"rm this is the case, 
and that its value is the startMiningWithPort:... method. To print out a null-
terminated string, we use the x command with the s format speci"er:

(lldb) x/s $rsi
0x1000f1576: "startMiningWithPort:password:coreCount:slowMemory:currency:"

Following the class and method name are the method’s arguments. 
From the method’s name, we can gather it takes "ve arguments that include 
a port, password, and currency. We couldn’t easily "gure out the values 
of these arguments using static analysis methods, such as a disassembler, 
because they didn’t readily appear. With the debugger, it’s a breeze. 

We know that the next arguments are stored in the RDX, RCX, R8, and R9 
registers, as speci"ed in the application binary interface. As this method 
takes more than four arguments, the last argument will be found on the 
stack (RSP). Let’s have a peek (Listing 8-23):

(lldb) po $rdx
7777

(lldb) po $rcx
qbix:greg@qbix.com
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(lldb) reg read $r8
r8 = 0x0000000000000001

(lldb) po $r9
always

(lldb) x/s $rsp
0x7ffeefbfe0d0: "graft"

Listing 8-23: Displaying the startMiningWithPort:... method’s parameters

Note that for the arguments that are objects, we use the po command to 
display their contents. For those that aren’t, we use the other appropriate 
display commands, such as reg read $r8 to view the contents of a register and 
x/s to display a NULL-terminated string. 

By examining the arguments, we’ve uncovered the port (7777), the 
account password (qbix:greg@qbix.com), cryptocurrency (graft), and more! 
Moreover, if we continue our debugging session, we’ll encounter additional 
data, for example, within a NSURLRequest object (which in this debugging ses-
sion is found in memory at 0x1018f04e0). In the debugger, in conjunction 
with the po command, we can invoke the NSURLRequest’s HTTPBody method on 
the object 1 to display the contents (speci"cally the body), of this network 
request. This reveals detailed account information and cryptomining statis-
tics (Listing 8-24): 

1 (lldb) po [0x1018f04e0 HTTPBody]
{
  "mining": {
    "statistic": {
      "ZeroCounter": 0,
      "AverageHashRate": 0.92911845445632935,
      "CounterTime": 30,
    },
    "params": {
      "Token": "qbix:greg@qbix.com",
      "Algorithm": "graft",
      "CPULimit": 25,
      "EnableMiningMode": true,
      "CPUBatteryLimit": 10,
      "CoreLimit": 25,
      "Ports": {
        "7777": 1000000,
        "5555": 160,
        "3333": 40
      }
    }
  },
  ...
}

Listing 8-24: Displaying a network object containing cryptocurrency miner account infor-
mation and statistics 

It is also worth noting that, as this information is securely transmitted 
over the network (encrypted), it would have been rather involved to recover 
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it via a simple network monitor. Via the debugger, it was relatively straight-
forward. If you’re interested in the full analysis of this application, including  
more details on the use of a debugger to uncover and understand its 
cryptomining logic, see my write-up “A Surreptitious Cryptocurrency 
Miner in the Mac App Store?”10

Up Next
In this chapter I introduced the debugger, the most thorough tool for ana-
lyzing even complex malware threats. Speci"cally, I showed how to debug 
a binary via breakpoints, instruction by instruction, while examining or 
modifying registers and memory contents, skipping functions you don’t 
want to execute, and much more. Now that you’re armed with this analysis 
capability, malware doesn’t stand a chance. 

Of course, malware authors are less than stoked that their malicious 
creations can be deconstructed so easily. In the next chapter, we’ll dive into 
the kinds of anti-analysis logic employed by malware authors to thwart (or 
at least complicate) both static and dynamic analysis efforts.
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